(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
ge(x, 0) → true
ge(0, s(x)) → false
ge(s(x), s(y)) → ge(x, y)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
div(x, y) → ify(ge(y, s(0)), x, y)
ify(false, x, y) → divByZeroError
ify(true, x, y) → if(ge(x, y), x, y)
if(false, x, y) → 0
if(true, x, y) → s(div(minus(x, y), y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(z0, z1) → c5(IFY(ge(z1, s(0)), z0, z1), GE(z1, s(0)))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, DIV, IFY, IF
Compound Symbols:
c2, c4, c5, c7, c9
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
z0,
z1) →
c5(
IFY(
ge(
z1,
s(
0)),
z0,
z1),
GE(
z1,
s(
0))) by
DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
DIV(x0, x1) → c5
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
DIV(x0, x1) → c5
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
DIV(x0, x1) → c5
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IFY, IF, DIV
Compound Symbols:
c2, c4, c7, c9, c5, c5
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
DIV(x0, 0) → c5(IFY(false, x0, 0), GE(0, s(0)))
DIV(x0, x1) → c5
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IFY(true, z0, z1) → c7(IF(ge(z0, z1), z0, z1), GE(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IFY, IF, DIV
Compound Symbols:
c2, c4, c7, c9, c5
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IFY(
true,
z0,
z1) →
c7(
IF(
ge(
z0,
z1),
z0,
z1),
GE(
z0,
z1)) by
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IFY(true, x0, x1) → c7
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IFY(true, x0, x1) → c7
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
IFY(true, x0, x1) → c7
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, DIV, IFY
Compound Symbols:
c2, c4, c9, c5, c7, c7
(9) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
IFY(true, z0, 0) → c7(IF(true, z0, 0), GE(z0, 0))
Removed 2 trailing nodes:
IFY(true, x0, x1) → c7
IFY(true, 0, s(z0)) → c7(IF(false, 0, s(z0)), GE(0, s(z0)))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(ge(z0, 0), x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, DIV, IFY
Compound Symbols:
c2, c4, c9, c5, c7
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
DIV(
x0,
s(
z0)) →
c5(
IFY(
ge(
z0,
0),
x0,
s(
z0)),
GE(
s(
z0),
s(
0))) by
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
DIV(x0, s(x1)) → c5
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
DIV(x0, s(x1)) → c5
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
DIV(x0, s(x1)) → c5
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, IFY, DIV
Compound Symbols:
c2, c4, c9, c7, c5, c5
(13) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
DIV(x0, s(x1)) → c5
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
IFY(true, s(z0), s(z1)) → c7(IF(ge(z0, z1), s(z0), s(z1)), GE(s(z0), s(z1)))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, IFY, DIV
Compound Symbols:
c2, c4, c9, c7, c5
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IFY(
true,
s(
z0),
s(
z1)) →
c7(
IF(
ge(
z0,
z1),
s(
z0),
s(
z1)),
GE(
s(
z0),
s(
z1))) by
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
K tuples:none
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, DIV, IFY
Compound Symbols:
c2, c4, c9, c5, c7, c7
(17) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
We considered the (Usable) Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [2]
POL(DIV(x1, x2)) = [4]
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = [4]
POL(IFY(x1, x2, x3)) = [4]
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = [1]
POL(ge(x1, x2)) = [4]x1 + [3]x2
POL(minus(x1, x2)) = [4]
POL(s(x1)) = 0
POL(true) = 0
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, DIV, IFY
Compound Symbols:
c2, c4, c9, c5, c7, c7
(19) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
We considered the (Usable) Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
And the Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [4]
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = [2]x1
POL(IFY(x1, x2, x3)) = [2]x1
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = [2]
POL(minus(x1, x2)) = [3] + [3]x1
POL(s(x1)) = 0
POL(true) = [2]
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
S tuples:
GE(s(z0), s(z1)) → c2(GE(z0, z1))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
GE, MINUS, IF, DIV, IFY
Compound Symbols:
c2, c4, c9, c5, c7, c7
(21) CdtForwardInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use forward instantiation to replace
GE(
s(
z0),
s(
z1)) →
c2(
GE(
z0,
z1)) by
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, IF, DIV, IFY, GE
Compound Symbols:
c4, c9, c5, c7, c7, c2
(23) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IFY(true, s(0), s(s(z0))) → c7(IF(false, s(0), s(s(z0))), GE(s(0), s(s(z0))))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
IF(true, z0, z1) → c9(DIV(minus(z0, z1), z1), MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, IF, DIV, IFY, GE
Compound Symbols:
c4, c9, c5, c7, c7, c2
(25) CdtInstantiationProof (BOTH BOUNDS(ID, ID) transformation)
Use instantiation to replace
IF(
true,
z0,
z1) →
c9(
DIV(
minus(
z0,
z1),
z1),
MINUS(
z0,
z1)) by
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(x0), s(0)) → c9(DIV(minus(s(x0), s(0)), s(0)), MINUS(s(x0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
s(
x0),
s(
0)) →
c9(
DIV(
minus(
s(
x0),
s(
0)),
s(
0)),
MINUS(
s(
x0),
s(
0))) by
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(x0), s(0)) → c9
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(x0), s(0)) → c9
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(x0), s(0)) → c9
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9, c9
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IF(true, s(x0), s(0)) → c9
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(31) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
We considered the (Usable) Rules:
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = x2
POL(IFY(x1, x2, x3)) = [2]x1 + x2
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = [2]
POL(ge(x1, x2)) = [3]x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [2] + x1
POL(true) = 0
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(s(x0)), s(s(x1))), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(33) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
IF(
true,
s(
s(
x0)),
s(
s(
x1))) →
c9(
DIV(
minus(
s(
s(
x0)),
s(
s(
x1))),
s(
s(
x1))),
MINUS(
s(
s(
x0)),
s(
s(
x1)))) by
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
IF(true, s(s(x0)), s(s(x1))) → c9
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9, c9
(35) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
IF(true, s(s(x0)), s(s(x1))) → c9
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(37) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = x1
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = x2
POL(IFY(x1, x2, x3)) = x2
POL(MINUS(x1, x2)) = 0
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = [5]
POL(ge(x1, x2)) = [5]x1
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(39) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
S tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(41) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [2]x1 + x12
POL(GE(x1, x2)) = 0
POL(IF(x1, x2, x3)) = x2 + x22
POL(IFY(x1, x2, x3)) = x2 + x22
POL(MINUS(x1, x2)) = [1] + x1
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = x1
POL(s(x1)) = [1] + x1
POL(true) = 0
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
S tuples:
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
We considered the (Usable) Rules:
minus(s(z0), s(z1)) → minus(z0, z1)
minus(z0, 0) → z0
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
And the Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(DIV(x1, x2)) = [2] + [2]x1 + x2 + [2]x1·x2
POL(GE(x1, x2)) = x2
POL(IF(x1, x2, x3)) = [2]x2 + [2]x2·x3
POL(IFY(x1, x2, x3)) = [2]x2 + [2]x2·x3 + x1·x3
POL(MINUS(x1, x2)) = x2
POL(c2(x1)) = x1
POL(c4(x1)) = x1
POL(c5(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(c7(x1, x2)) = x1 + x2
POL(c9(x1, x2)) = x1 + x2
POL(false) = 0
POL(ge(x1, x2)) = 0
POL(minus(x1, x2)) = [1] + x1
POL(s(x1)) = [2] + x1
POL(true) = [1]
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
ge(z0, 0) → true
ge(0, s(z0)) → false
ge(s(z0), s(z1)) → ge(z0, z1)
minus(z0, 0) → z0
minus(s(z0), s(z1)) → minus(z0, z1)
div(z0, z1) → ify(ge(z1, s(0)), z0, z1)
ify(false, z0, z1) → divByZeroError
ify(true, z0, z1) → if(ge(z0, z1), z0, z1)
if(false, z0, z1) → 0
if(true, z0, z1) → s(div(minus(z0, z1), z1))
Tuples:
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
S tuples:none
K tuples:
IFY(true, s(x0), s(x1)) → c7(GE(s(x0), s(x1)))
IF(true, s(z0), s(0)) → c9(DIV(minus(z0, 0), s(0)), MINUS(s(z0), s(0)))
IF(true, s(s(x0)), s(s(x1))) → c9(DIV(minus(s(x0), s(x1)), s(s(x1))), MINUS(s(s(x0)), s(s(x1))))
DIV(x0, s(z0)) → c5(IFY(true, x0, s(z0)), GE(s(z0), s(0)))
IFY(true, s(z0), s(0)) → c7(IF(true, s(z0), s(0)), GE(s(z0), s(0)))
IFY(true, s(s(z0)), s(s(z1))) → c7(IF(ge(z0, z1), s(s(z0)), s(s(z1))), GE(s(s(z0)), s(s(z1))))
MINUS(s(z0), s(z1)) → c4(MINUS(z0, z1))
GE(s(s(y0)), s(s(y1))) → c2(GE(s(y0), s(y1)))
Defined Rule Symbols:
ge, minus, div, ify, if
Defined Pair Symbols:
MINUS, DIV, IFY, GE, IF
Compound Symbols:
c4, c5, c7, c7, c2, c9
(45) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(46) BOUNDS(O(1), O(1))